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Abstract 
The computing models for HEP experiments are 

becoming ever more globally distributed and grid-based, 
both for technical reasons (e.g., to place computational 
and data resources near each other and the demand) and 
for strategic reasons (e.g., to leverage technology 
investments). To support such computing models, the 
network and end systems (computing and storage) face 
unprecedented challenges. One of the biggest challenges 
is to transfer physics data sets – now in the multi-petabyte 
(1015 bytes) range and expected to grow to exabytes 
within a decade – reliably and efficiently among facilities 
and computation centers scattered around the world. Both 
the network and end systems should be able to provide 
the capabilities to support high bandwidth, sustained, end-
to-end data transmission. Recent trends in technology are 
showing that although the raw transmission speeds used 
in networks are increasing rapidly, the rate of 
advancement of microprocessor technology has slowed 
down over the last couple of years. Therefore, network 
protocol-processing overheads have risen sharply in 
comparison with the time spent in packet transmission, 
resulting in the degraded throughput for networked 
applications. More and more, it is the network end 
system, instead of the network, that is responsible for 
degraded performance of network applications. In this 
paper, the Linux system’s packet receive process is 

studied from NIC to application. We develop a 
mathematical model to characterize the Linux packet 
receive process. Key factors that affect Linux systems’ 
network performance are analyzed. 

PACKET RECEIVING PROCESS 
Figure 1 demonstrates generally the trip of a packet 

from its ingress into a Linux end system to its final 
delivery to the application [1][2][3]. In general, the 
packet’s trip can be classified into three stages: 
• Packet is transferred from network interface card 
(NIC) to ring buffer. The NIC and device driver manage 
and controls this process. 
• Packet is transferred from ring buffer to a socket 
receive buffer, driven by a software interrupt request 
(softirq) [2][4]. The kernel protocol stack handles this 
stage. 
• Packet data is copied from the socket receive buffer 
to the application, which we will term the Data 
Receiving Process. 

 
In the following sections, we detail these three stages. It 

will be assumed that the medium is Ethernet-like and that 
the driver uses the Linux “New API” (NAPI) to reduce 
interrupt load on the CPU.  
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Figure 1 Linux Networking Subsystem: Packet Receiving Process

NIC and Device Driver Processing 
The Linux kernel uses a structure sk_buff [2] to hold 

any single packet up to the MTU (Maximum Transfer 
Unit) of the network. The device driver maintains a “ring” 
of these packet buffers, known as a “ring buffer,” for 
packet reception (and a separate ring for transmission). A 
ring buffer consists of a device- and driver-dependent 
number of packet descriptors. To be able to receive a 
packet, a packet descriptor should be in “ready” state, 
which means it has been initialized and pre-allocated with 
an empty sk_buff memory-mapped into I/O space for 
DMA. When a packet comes, one of the ready packet 

descriptors in the reception ring will be used, the packet 
will be transferred into the pre-allocated sk_buff, and the 
descriptor will be marked as used. A used packet 
descriptor should be reinitialized and refilled with an 
empty sk_buff as soon as possible for further incoming 
packets. If a packet arrives and there is no ready packet 
descriptor in the reception ring, it will be discarded. 

Figure 2 shows a general packet receiving process at 
NIC and device driver level. When a packet is received, it 
is transferred into main memory and an interrupt is raised 
only after the packet is accessible to the kernel. When 
CPU responds to the interrupt, the driver’s interrupt 
handler is called, which schedules a softirq. It puts a 
reference to the device into the poll queue of the 
interrupted CPU and disables the NIC’s receive interrupt 
until the packets in its ring buffer are processed. 
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The softirq is serviced shortly afterward. The CPU 
polls each device in its poll queue to get the received 
packets from the ring buffer by calling the poll method of 
the device driver. In dev->poll(), each received packet is 
passed upwards for further processing. After a packet is 
dequeued from its receiving ring buffer, its corresponding 
packet descriptor needs to be reinitialized and refilled. 

Kernel Protocol Stack 
• IP Processing 

The IP protocol receive function ip_rcv() is called when 
an IP packet is dequeued. It verifies packet integrity and 
invokes any netfilter hooks, then calls ip_rcv_finish(), 
which routes the packet over the network or delivers it 
locally by ip_local_deliver(). There, the higher layer 
protocol is determined and the corresponding handler 
function is invoked: tcp_v4_rcv() and udp_rcv() are two 
examples. 
• TCP Processing 

After header sanity checks, the TCP code looks up the 
socket associated with the packet. Each socket has a lock 
to protect its data from un-synchronized modification. If 
the socket is locked, the packet is placed on the backlog 
queue and all further processing is deferred. If the socket 
is not locked, and its Data Receiving Process is waiting 
for data, the packet is added to the socket’s prequeue and 
will be processed in batch in the process context, instead 
of the interrupt context [4] If the prequeue mechanism 
does not accept the packet, then the socket is not locked 
and no process is waiting for input on it. The packet must 
be processed immediately by a call to tcp_v4_do_rcv(), 
which is also called to drain the backlog queue and 
prequeue. It is through this function that packets are 
acknowledged, and window and round-trip time estimates 
are updated. Here, we focus on the data packet 
processing. 

The packet is handled on the so-called fast path if it is 
exactly the next packet expected in a received sequence 
with no gaps. If, in addition, the socket belongs to the 
currently active process and the data fits into the 
application-supplied buffer, the data will be copied 
directly from the sk_buff to user memory. This direct 
copy can also occur on the slow path if the packet fills the 
beginning of the first hole in the received stream. On 
either path, if the data cannot be copied directly to user 

space, it goes onto the receive queue. Figure  shows the 
various queues the packet may occupy, including the out-
of-sequence queue, which holds packets received out of 
order until the gaps preceding them are filled. Unlike the 
other three queues, packets in the receive queue are 
guaranteed in order, acked, and without gaps. Packets in 
out-of-sequence queue are moved to the receive queue 
when additional packets fill the preceding holes in the 
data stream. 

As previously mentioned, the backlog and prequeue are 
drained in the process context (except in the case of 
prequeue overflow). The socket’s data receiving process 
obtains data from the socket through socket-related 
receive system calls. For TCP, all such system calls result 
in the final calling of tcp_recvmsg(), which is the top end 
of the TCP transport receive mechanism. As shown in 
Figure 4, tcp_recvmsg() first checks the receive queue. 
Since packets in the receive queue are guaranteed in 
order, acknowledged, and without gaps, their data is 
copied to user space directly. Then tcp_recvmsg() will 
process the prequeue and backlog queue, respectively, if 
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Figure 3 TCP Processing - Interrupt context 
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Figure 4 TCP Processing – Process Context 



they are not empty and space in the user buffer remains. 
tcp_v4_do_rcv() is called for both of these queues. 
Afterward, processing is performed similar to that in the 
interrupt context. 
• UDP Processing 

When a UDP packet arrives from the IP layer through 
ip_local_deliver(), it is passed on to udp_rcv(). 
udp_rcv()’s mission is to verify the integrity of the UDP 
packet and to queue (udp_queue_rcv_skb()) one of more 
copies for delivery to multicast and broadcast sockets and 
exactly one copy to unicast sockets. When queuing the 
received packet in the receive queue of the matching 
socket, if there is insufficient space in the receive buffer 
quota of the socket, the packet may be discarded. Data 
within the Socket’s receive buffer are ready for delivery 
to the user space. 

Data Receiving Process 
Packet data is finally copied from the socket’s receive 

buffer to user space by data receiving process through 
socket-related receive system calls. The receiving process 
supplies a memory address and number of bytes to be 
transferred, either in a struct iovec, or as two parameters 
gathered into such a struct by the kernel. All the TCP 
socket-related receive system calls result in the final 
calling of tcp_recvmsg(), which will copy packet data 
from socket’s buffers (receive queue, prequeue, backlog 
queue) through iovec. For UDP, all the socket-related 
receiving system calls result in the final calling of 
udp_recvmsg(), which is the front end to the UDP 
transport receive mechanism. When udp_recvmsg() is 
called, data inside receive queue is copied through iovec 
to user space directly. 

PERFORMANCE ANALYSIS 
Based on the packet receiving process described in 

previous sections, the packet receiving process can be 
described by the model in Figure 5.  In the mathematical 
model, the NIC and device driver receiving process can 
be represented by the token bucket algorithm [5], 
accepting a packet if a ready packet descriptor is available 
in the ring buffer and discarding it if not. The rest of the 
packet receiving processes are modelled as queuing 
processes [6]. 

We assume several incoming data streams are arriving 
and define the following symbols (all rates are in packets 
per time unit): 
• , : Offered, accepted total packet rate )(tRT )(' tRT

• , : Offered, accepted packet rate for data 
stream i 

)(tRi )( ' tRi

• : Refill rate for used packet descriptors )(tRr

• : The total number of packet descriptors in the 
receive ring buffer; 
D

• : Number of packet descriptors in ready state )(tA
• minτ : The minimum time interval between a packet’s 

ingress into the system and its first being serviced by 
a softirq; 

• : Kernel protocol packet service rate )(tRs

• : Softirq packet service rate for stream i )(tRsi

• : Data receiving process packet service rate 
for stream i 

)(tRdi

• : Socket i’s receive buffer size (Bytes); )(tBi

• : Socket i’s receive buffer quota (Bytes); iQB
The Token Bucket algorithm is a surprisingly good fit 

to the NIC and device driver receiving process. In our 
model, the receive ring buffer is represented as a token 
bucket with a depth of  tokens. Each packet descriptor 
in the ready state is a token, granting the ability to accept 
one incoming packet. The tokens are regenerated only 
when used packet descriptors are reinitialized and refilled.  
If there is no token in the bucket, incoming packets will 
be discarded.  

D

The offered and accepted packet rates are related by 

RT ' (t) =
RT (t), A(t) > 0

0, A(t) = 0
⎧ 
⎨ 
⎩ 

     (1) 

So to admit packets without discarding, the system 
should satisfy 

0>∀t  ,         (2) 0)( >tA
It can be derived that 

∫∫ +−=
t

r

t

T dRdRDtA
00  )()()( ττττ ,  (3) 0>∀t

Since is a function of both and , it cannot be 
controlled directly. In order to avoid or minimize packet 
drops, the system needs to raise its  and/or . 

'TR TR )(tA

)(tRr D
Rr(t)  depends on the following two factors: (1) Protocol 
packet service rate Rs(t) . To raise the packet service 
rate, approaches to reducing processing in the kernel have 
been proposed. For example, TCP/IP Offloading 
technology [7] aims to free the CPU of some packet 
processing by shifting tasks to the NIC or storage device. 
Also, when the system is in memory pressure, allocation 
of new packet buffers is prone to failure and a used packet 
descriptor cannot be refilled. Absent memory shortage, it 
can be assumed that Rs(t) = Rr (t).   
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Figure 3 Packet Receiving Process - Model 



The rest of the packet receiving processes are modeled as 
queuing processes. In the model, socket i’s receive buffer 
is a queue of size . The packets are put into the 

queue by softirq with a rate of , and are moved out 
of the queue by the data receiving process with a rate 
of

iQB
)(tRsi
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Figure 4 Data receiving process running model 

For stream i, based on the packet receiving process, 
)()( tRtR ii ≤  and )()( tRtR ssi ≤     (5) 

Similarity, it can be derived that: 

∫∫ −=
t

di

t

sii dRdRtB
00

)()()( ττττ     (6) 

In transport layer protocol operations Bi(t)  plays a 
key role. For UDP, when Bi(t) ≥ QBi , all the incoming 
packets for socket i is discarded and all the protocol 
processing effort spent the dropped packet is wasted. 
From both the network end system and network 
application’s perspective, this is a condition to avoid. 

TCP does not drop packets at the socket level as UDP 
does when the receive buffer is full. Instead, it advertises 
QBi − Bi(t)  to the sender to perform flow control. 
Instead, when a TCP socket’s receive buffer is near full, 
the small window QBi − Bi(t)  advertised to the sender 
side will throttle the data sending rate, resulting in lower 
TCP throughput [8]. 

From both UDP and TCP’s perspectives, it is desirable 
to raise the value of QBi − Bi(t) , which is: 

∫∫ +−
t

di

t

sii dRdRQB
00

)()( ττττ     (7) 

Clearly it is not desirable to reduce Rsi(t) to achieve 
the goal. But the goal can be achieved by raising QB  
and/or 

i
Rdi(t) . On most operating systems, QB  is 

configurable, subject to system memory limits. 
i

Rdi(t)  depends on the system load and the data 
receiving process’ nice value. Linux is a preemptive 
multi-processing operating system. Processes are 
scheduled to run in prioritized round robin fashion. Each 
process’ time slice is calculated based on its nice value. 
When a process’ time slice runs out, the process is 
considered expired. A process with no time slice is not 
eligible to run until all other processes have exhausted 
their time slice. At that point, the time slices for all 
process are recalculated [4]. Figure 6 shows the data 
receiving process’ running model. 

Let’s assume the data receiving process’ packet service 
rate is constant D when the process is running. For the 
cycle n in Figure 6, we have: 
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Therefore, to raise the rate of Rdi(t) , the only way is to 
increase data receiving process’ CPU share: either lower 
data receiving process’ nice value (negative values are 
favored over positive), or reduce the system load to 
increase the process’ running frequency. 

OBSERVATIONS 
We have instrumented the Linux network stack to 
snapshot the packet queues at regular intervals and record 
their lengths in a memory area for later examination. We 
were able to observe exhaustion of the ring buffer and the 
consequent decrease in throughput, and the fluctuations in 
packet processing under load. A more complete 
presentation of the observational results will be published 
elsewhere. 

CONCLUSION 
In this paper, the Linux system’s packet receiving 

process is studied from NIC to application. Our 
mathematical model of the process implies, and 
instrumented observation support, that key factors 
affecting Linux systems’ network performance include: 
(1) The reception ring buffer in NIC and device driver as 
a cause of packet drops. (2) The data receiving process’ 
CPU share gates TCP processing and queue servicing. 
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